

Weather Radar Do You Really Know What You are Looking At?

2010 SEMA Conference April 20 – 23, 2010

Radar History

- World War II radar technology
- 1946 APQ-13s / CPS-9s
- 1959 WSR-57s
 - Network/53
 - Hurricane / Tornado emphasis
 - Camera added
- 1976 WSR-74s
 - Local Warning

WSR-88D (NEXRAD)

- Development 1960-1980
- First Twin Lakes, OK
 - Fall 1990
- Color imagery
- Doppler data
- Higher resolution
- Scanning strategies

COMPLETED WSR-88D INSTALLATIONS WITHIN THE CONTIGUOUS U.S.

WSR-88D - Specs

- Dish 28 feet/Dome 39 feet
- Radar Wavelength: S-Band, 10 cm
- Radar Frequency: 2880 MHz
- Beam width: 1 Degree (0.88 0.96)
- Peak Power: 750 kW
- Tower Height: 40 ft 100 feet

Can see 248 nm – Warning: 124 nm

Pulse of energy

- Radar is only transmitting six seconds of every hour (about 0.17%)
- The radar "listens" the other 99.83%.

- Radar targets include:
- Rain
- Hail
- Snow
- Drizzle
- Dirt/dust
- Smoke
- Insects
- Birds
- Air density changes

- Size of particles
- Shape of particles
- Number of particles
- State of particles (liquid, ice, snow)
- Reflectivity

- Large more numerous particles, such as big raindrops and water coated hail Return more energy/power
- Small raindrops, ice, snow, drizzle
 Return less power energy/power

- Color scale on reflectivity displays is a representation of the power return
- But Scales change

DBZ

70

65 60

55

45

35

-15 -20 -25 -30

Note the values on each color bar

Volume Coverage Pattern (VCP)

- Scanning strategy
- Tell the radar which part of
- the atmosphere to scan
- Allow for 3D views of storms
- Monitor airflow and rotation
- within storms
- Evaluate storm strength and
- trends over time

Radar does a 360 degree sweep
 Tilts to next elevation

VCP

- Precipitation Mode (Mode A)
 - VCP 11: 14 angles in 5 minutes[Severe Weather, Tstorms]
 - VCP 12: 14 angles in 4.5 minutes[Severe Weather, Tstorms]
 - VCP 21: 9 angles in 6 minutes[General Precip, Tstorms]
 - VCP 121, 211, 212, 221: variations of above with additional signal processing

VCP

- Clear Air Mode (Mode B)
 - VCP 31: 5 angles in 10 minutes [Very light precip, Clear air]
 - VCP 32: 5 angles in 10 minutes [Very light precip, Clear air]

Note the values on each color bar

Clear Air Mode (10 minutes)

Precipitation Mode (5 minutes)

Radar Beam Characteristics

Beam gains elevation with height

Beam and VCP Limits

 Storms on top of radar are only sampled at low elevations

Beam and VCP Limitations

Beam spreads and rises (curvature of Earth)

Range	!
	•

Beam Diameter

Beam height

Center

• 10 nm

1000 feet

600 feet

• 50 nm

1 mile

4400 feet

100 nm

2 miles

12500 feet

150 nm

3 miles

25000 feet

Beam Width

- Distance and beam width affect resolution
 - Small scale features hard to see
 - Solid line of storms at a distance may have "gaps" that the radar cannot resolve until they are closer

Basic Radar Products

- Reflectivity
- Velocity
- Derived Products

Reflectivity

- Most widely used
- Units of decibels (dbz), proportional to rainfall/precipitation rate
- Base and composite
- Base refers to a single elevation slice (NWS websites show 0.5)

Base Reflectivity

Composite Reflectivity

 Displays the highest value in a vertical column: But you do not know where it is

- Due to atmosphere, beam is bent to the Earth (Ducting). Objects on ground appear as precipitation anomalous propagation (AP)
- Radar has algorithms which eliminates most AP

Ground Clutter

Sunrise/Sunset

- Electromagnetic interference
- Radar points directly at the sun
- One volume scan

- Doppler effect: return signal changes if object is moving
- See wind fields in a storm: Circulation
- Not total velocity: Radial Velocity
- Base Velocity and Storm Relative

True velocity only if moving directly toward or away from radar

Radar sees portion of velocity

Radar sees zero velocity

- Warm colors (red)
 positive values
 away from radar
- Cool colors (green)
 negative values
 toward the radar
- Purple Haze "Range folding":??

Base – Storm-Relative

Base Velocity

Storm-Relative Velocity

Storm Relative Velocity

Subtract out the storms motion. What is left is the wind motion as if the storm were stationary.

Base vs. Storm-Relative

- Base velocity used for straight-line wind gusts
- Storm-relative velocity used to identify circulations that may be masked by the storm motion

- ESTIMATE!!!
- Good with location
- Amount can be close, too high or too low
- Usually amounts are too high due to hail or ice contamination
- 1 Hour / Storm Total products

Precipitation Estimates

Other Products (algorithms)

- Vertically Integrated Liquid
 - Hail and heavy rain location
- Hail: Maximum expected hail
 - Often overestimates
- Mesocyclone
- Tornado Vortex Signature
 - False alarms!!!
- Storm Track

Radar on the Internet (NWS)

- Base Reflectivity (0.5)
- Composite Reflectivity
- Base Velocity
- Storm-Relative Velocity
- Rainfall Estimates
 - 1 Hour
 - Storm Total

NWS Radar

NWS Radar

Sectors

Northern U.S.

Pac. Northwest Loop Nrn. Rockies Loop Upper Miss. Vly. Loop Great Lakes Loop Northeast Loop

Southern U.S.

Pac. Southwest Loop Srn. Rockies Loop Southern Plains Loop Srn. Miss. Vly. Loop Southeast Loop

U.S. Views Reflectivity:

National Loop Alaska Loop Loop Hawaii Guam Loop Puerto Rico Loop

Radars by State V.

Go!

Additional Info:

Radar FAQ Downloading Images GIS Users Doppler University

Base Reflectivity

NWS is accepting comments on proposed combined warning and radar displays until October

Full resolution version (3400x1700 pixels - 220k)

Time of image: 1458 UTC 04/12/2010

National Radar Mosaic Sectors

Position Locator

- Default: Radar site
- Click on map to change

Distance from Radar, Lat/Lon of selected location

O Mi North (O Deg)

Reset:

O Mi North (O Deg)

Reset:

O Mi Away

South

O Mi Away

Distance from Selected Location

O Mi Away

South

Distance from Selected Location

O Mi Away

South

Distance from Selected Location

O Mi Away

South

Distance from Selected Location

Position Locator

- Centerville is Home
- Curser on Rolla

Case Study: 1

Case 1 5:19 pm

Case 1 5:45 pm

Case 1 Tornado

Case 2

Case 3

Case 3 Wind Gusts

